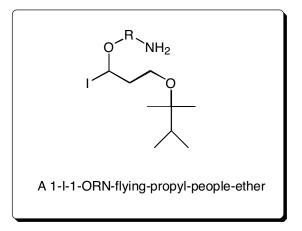


Midterm Exam 01 08 February 2002


NAME

KEY

QUOTE OF THE DAY

It is disconcerting to reflect on the number of students we have flunked in chemistry for not knowing what we later found to be untrue.

-- Robert L. Weber, Science With a Smile (1992)

Please read through each problem carefully. Enter your answers in the spaces provided.

	16 pts 8 pts	A note about drawing structures: you should make your drawings as clear as possible to understand. Stereochemistry should be indicated unambiguously using conventional drawing techniques (eg. bold wedges and dashes).
Problem 3	8 pts	The most common mistake on an exam is not reading the question carefully. I suggest you
Problem 4	9 pts	go through the exam and answer the questions that come easily. Then go back and
Problem 5	18 pts	tackle the more challenging problems. Finally, check any work you have done, but remember, your first instinct is usually correct.
Problem 6	20 pts	If you need scrap paper or more room, use the back of the test pages.
Problem 7	20 pts	
given	1 pts 1	
TOTAL	100 pts	

1. Indicate whether the following statements are True or False. (16 points)

Infrared Spectroscopy can give us information about functional groups.

Molecules will fragment in the Mass Spectrometer to give only the most stable fragment.

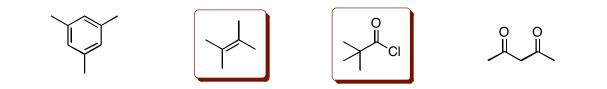
A kinetically controlled reaction gives the most stable product because the reaction is reversible.

Conjugation lowers the energy of a molecule because the electrons are more delocalized.

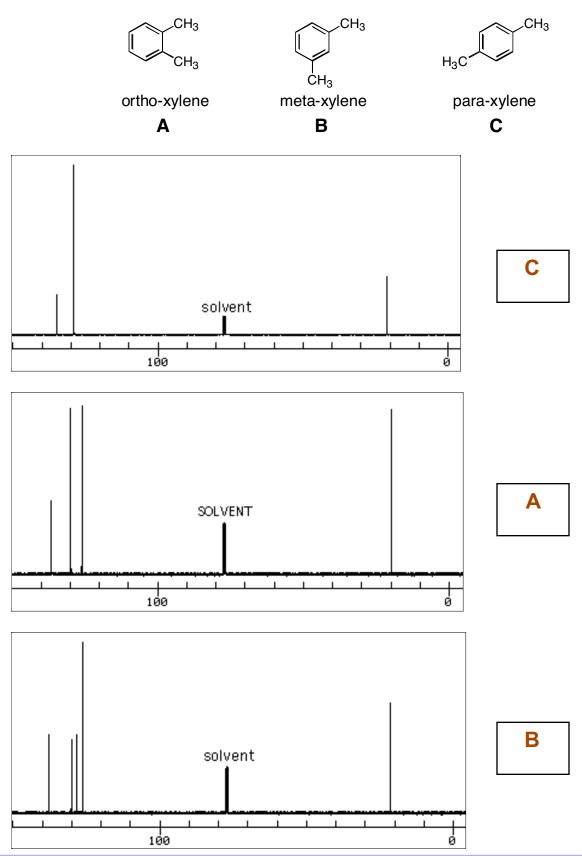
The energy required to flip a nuclear spin state aligned with a magnetic field lies in the microwave region of the electromagnetic spectrum.

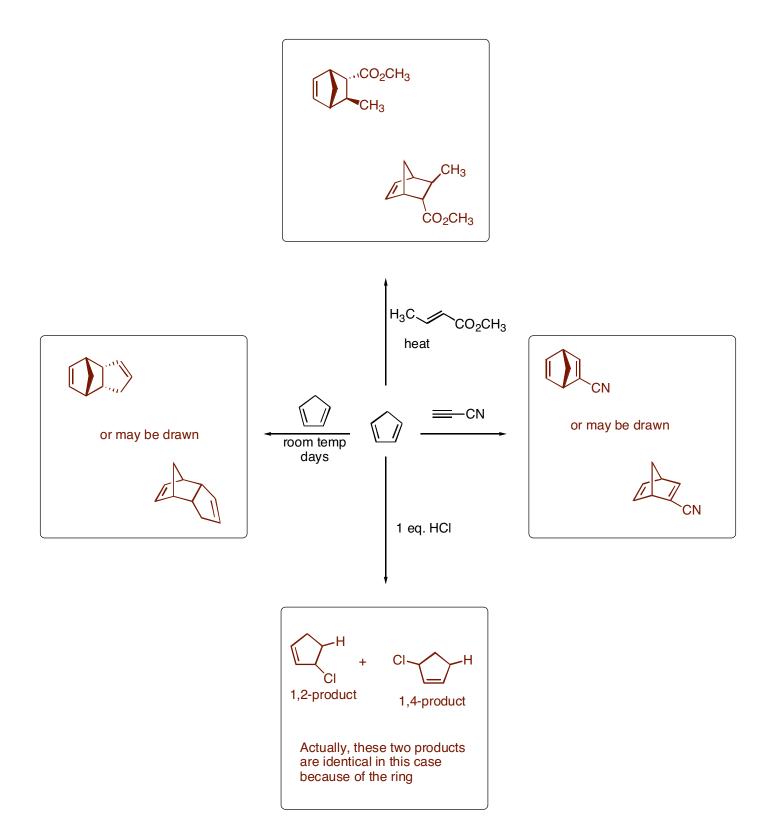
A proton signal in the NMR will be split into three peaks if it has two neighboring protons.

Two proton resonances that are coupled to one another will each be split with different coupling constants.



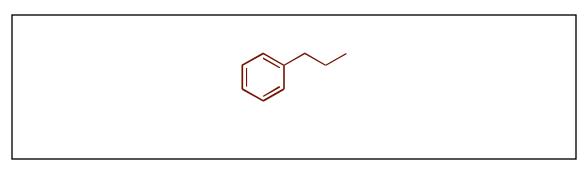
In a Diels-Alder cycloaddition reaction, all new bonds are formed in a single step.


2. Circle all the following molecules that have conjugated pi-systems. (8 points)

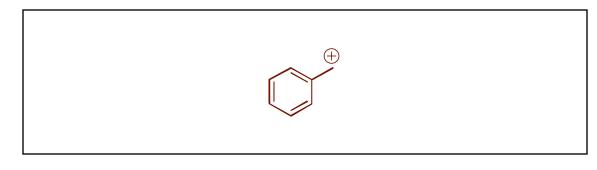

3. Circle all the following molecules that would show only a single peak in the ¹H NMR. (8 points)

4. The three compounds shown below, ortho-, meta-, and para-xylene have very different ¹³C NMR spectra. Match the structures with the correct spectra by placing the letter of the compound in the appropriate box. (9 points)

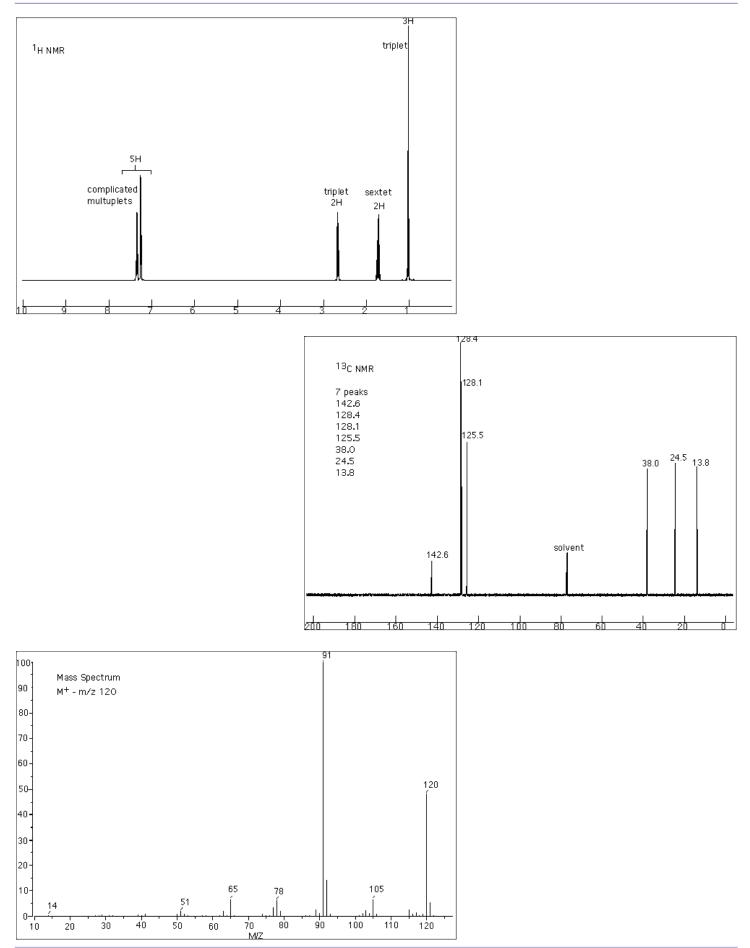
5. Draw the product or products of the following reactions. Show any stereochemistry clearly where appropriate. (18 points)



 Answer the following questions about an unknown molecule with a molecular formula of C₉H₁₂. The ¹H NMR, ¹³C NMR mass spectrum for this unknown compound are shown on the following page. (20 points)


What type of functional group do the proton resonances between 7.0 and 8.0 ppm represent?

What is the structure of the unknown molecule?



In the Mass Spectrum, what does the peak at m/z 91 correspond to (draw a structure)?

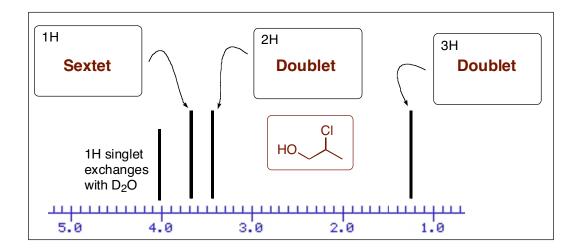
Briefly explain why the MS peak at m/z 91 is the base peak.

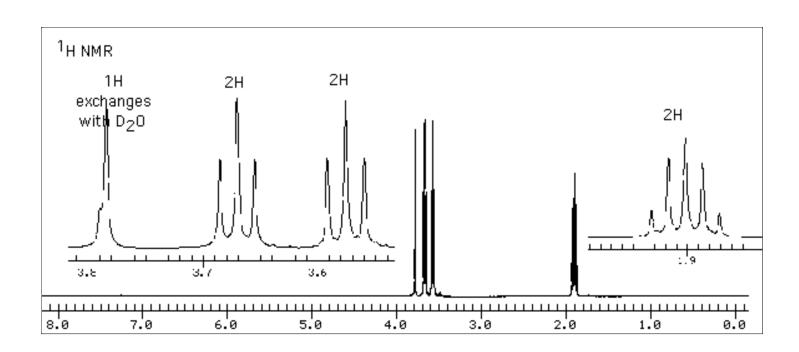
The molecule will fragment to put the positive charge on the benzylic carbon (the carbon adjacent to the benzene ring) because this allows for resonance stabilization.

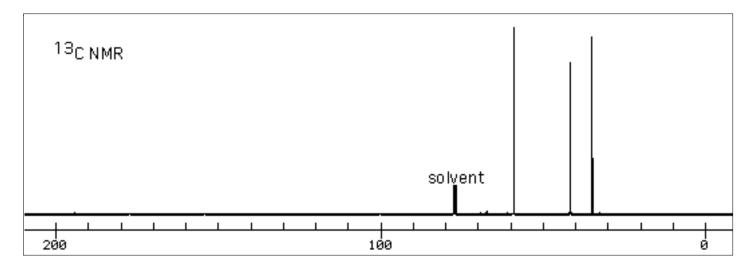
7. Answer the following questions about an unknown molecule with a molecular formula of C₃H₇CIO. A strong and broad IR absorbance is observed centered at 3500 cm⁻¹. The ¹H NMR and ¹³C NMR spectra for this unknown compound are shown on the following page. (20 points)

How many	degrees of	unsaturation	does the	molecule	possess?
----------	------------	--------------	----------	----------	----------

What functional group does the proton resonance at 3.8 ppm correspond to?




0


What is the structure of the unknown molecule?

HO	

If the chlorine were moved to the middle carbon, indicate on the example spectrum below what you would expect the splitting patterns to be (eg. singlet, doublet, triplet, quartet, etc.)

Functional Group	Wavenu Range		Absorptio Strength		notes
н	2850)-2960	medium-str	rong	below 3000
=с-н	3020)-3100	medium		above 3000
≡с-н	330	00	strong		above 3000
0-Н	3400	-3650	broad-stro	ong	
N-H	3300)-3500	medium		#H's = #peaks
—C≣C— —C≣N O=C=O	} 2100)-2260	medium		
C=O	1680)-1750	strong		
)⊂=0)⊂=c	1640)-1750	medium		
C-C	800-1300		medium		
C-0	1050)-1150	medium		
C-X	<1000		strong		
Alkene out of	f plane bend	ling			
H H C=C H H	910 and 990	strong	H H C=C R R	700	strong
R H C=C R H	890	strong	R H C=C R R	815	strong
H C=C H	970	strong			

Infrared Stretching Absorptions

Functional Group	Туре	¹ H Chemical Shift (ppm)	¹ H Chemical Shift (ppm)
—С-н 	Alkane	0.7 -1.8	10 - 60
=с-с–н 	Allylic or next to carbonyl	1.6 - 2.4	30 - 60
Х-С-Н 	next to halogen or alcohol	2.5 - 4.0	20 - 85
О С—О-С-Н 	next to oxygen of an ester	4.0 - 5.0	50 - 85
 =с-н	vinylic	4.5 - 6.5	110 - 150
C-H	aromatic	6.5 - 8.0	110 - 140
О —С-Н	aldehyde	9.7 - 10.0	190 - 220
O-H	alcohol	varies widely will exchange with D ₂ O	N/A
о —С–Х	carbonyl of ester, amide, or carboxylic acid (X = O, N)	N/A	165 - 185
0 C	carbonyl of ketone or aldehyde	N/A	190 - 220

Typical NMR Chemical Shifts