Chem 342 Organic Chem II

These notes can be obtained at: http://www.ndsu.nodak.edu/instruct/grcook/chem342/notes.shtml

Chapter 12: Mass Spectrometry and Infrared Spectroscopy

How do we determine the structure of organic molecules?

Probe the physical properties

Elemental Analysis (combustion analysis)

Atomic composition (relative ratios) Empirical formula

Mass Spectrometry

Molecular formula Elemental identification (isotopes) Structural features (from fragments)

Infrared (Vibrational) Spectroscopy

Functional Group Identities

Ultraviolet (electronic) Spectroscopy

Conjugated pi-systems

Nuclear Magnetic Resonance Spectroscopy

Atom connectivity Functional groups stereochemistry

X-Ray Crystallography

3D position of atoms

Elemental Analysis

Provides empirical formula

Percent Composition by Mass					
C - 63.31% H - 6.28% Cl - 16.99% N - 13.42%			Assume 100g sample		
Moles of C =	<u>63.31 g</u> 12.011 g/mol	=	5.27	5.27 / 0.48 = 11	
Moles of H =	6.28 g 1.008 g/mol	=	6.23	6.23 / 0.48 = 13	
Moles of N =	13.42 g 14.007 g/mol	=	0.96	0.96 / 0.48 = 2	
Moles of CI =	16.99 g 35.45 g/mol	=	0.48	0.48 / 0.48 = 1	

 \implies Empirical Formula = C₁₁H₁₃N₂Cl

Units of Unsaturation

The number of pi-bonds and rings in the molecule Saturated hydrocarbon has the general formula C_nH_{2n+2} Every pi-bond or ring removes 2 H's – each loss of 2 H's is an unsaturation Difference in the number of H's between the saturated and the unsaturated molecule Every halogen replaces one H and must be counted Every nitrogren adds one H and must be counted

General Formula for Units of Unsaturation

 $UN = \frac{(2n+2) - \#H - \#X + \#N}{2}$

Empirical Formula = C_{11}H_{13}N_2CI

$$UN = \frac{(2^{*}11+2) - 13 - 1 + 2}{2} = 6$$

#X is the actual number of halogens#N is the actual number of nitrogensdivide by 2 because each unit of unsaturation

removes 2 H's from the molecule

2n+2 is the number of H's if completely saturated

#H is the actual number of H's in the molecule