These notes can be obtained at: http://www.ndsu.nodak.edu/instruct/grcook/chem342/notes.shtml

Chapter 18: Ethers and Epoxides; Thiols and Sulfides

Preparation of Epoxides

Epoxides can be made in one step by reaction with meta-chloroperbenzoic acid (MCPBA). This is a stereospecific reaction and both C-O bonds are formed at the same time. They can also be prepared in two steps by formation of a halohydrin followed by treatment with NaH (a Williamson Ether Synthesis).

Reactions of Epoxides

Epoxides are more reactive than typical ethers due to ring strain. Under acidic conditions, primary and secondary protonated epoxides will be attached by nucleophiles via a $S_N 2$ mechanism - thus the nucleophile will add to the less hindered carbon. If there is a tertiary carbon in the epoxide, there will be more positive charge at that carbon so nucleophiles will add to the more hindered carbon. Note that this is still a stereospecific anti addition as there is not a full carbocation formed. It is somewhere in between a $S_N 2$ and $S_N 1$ mechanism.

HCI
$$\bigoplus_{O}$$
 HCI \bigoplus_{O} HCI \bigoplus_{O} CI $\bigoplus_{$

Base catalyzed or nucleophilic opening of epoxides can be done, but it is more difficult.

Thiols and Sulfides

The sulfur analogs of alcohols are called thiols and the sulfer analogs of ethers are called sulfides.

H ₃ C-SH	H ₃ C-S-CH ₃
methanethiol	dimethylsulfide