

$$\mathbf{B}_{\text{effective}} = \mathbf{B}_{\mathbf{0}} - \mathbf{B}_{\text{local}}$$

Actual magnetic field felt by the nucleus

From Last Lecture

$\bigcirc \delta = ppm = Chemical Shift from TMS (Hz)$ Spectrometer Frequency (MHz)

From Last Lecture

Difficult - Carbon 13 only 1.1% of all carbon.

- Number of different carbons
- Searce Functional Group Regions

¹³C NMR

From Last Lecture

Symmetry in molecules can make carbons "Chemically Equivalent"

The intensity of the peaks roughly correlates with the number of hydrogens on the carbon.

© 2004 Thomson/Brooks Cole

CI3 NMR Regions

¹³C NMR

р

Bromooctanol

Bromooctanal

Alanine Me-Ester HCl

Alaninol

Alaninol - phthalimide

DEPT-CI3

A - normal
CI3

- B CH carbons only
- C Odd # up (CH3 and CH) Even # down (CH2)

Example from 13.7

© 2004 Thomson/Brooks Cole

A Real Example

The Answer Is ...

- Number of chemically different hydrogens
- Relative Ratios of protons (peak size)
- How many neighboring hydrogens
- Chemical shifts and functional groups

Proton Equivalency

Proton NMR Scale

Methyl Acetate

