- The intensity of the peaks roughly correlates with the number of hydrogens on the carbon.
- DEPT-CI3 NMR can tell you exactly how many H's are on the carbons.
- Reactions can be followed by watching functional group changes.
- Symmetry (# of different carbons) is very useful information.
- Proton NMR similar but more information.

Proton NMR Scale

NMR Correlation Chart

	<i>,</i> ,		
Functional Group	Туре	¹ H Chemical Shift (ppm)	¹³ C Chemical Shift (ppm)
— <mark> </mark> —С-Н	Alkane	0.7 -1.8	10 - 60
=с-с–н 	Allylic or next to carbonyl	1.6 - 2.4	30 - 60
Х-С-Н 	next to halogen or alcohol	2.5 - 4.0	20 - 85
О С-О-С-Н 	next to oxygen of an ester	4.0 - 5.0	50 - 85
= с-н	vinylic	4.5 - 6.5	110 - 150
C ^{-H}	aromatic	6.5 - 8.0	110 - 140
О —С-н	aldehyde	9.7 - 10.0	190 - 220
O-H	alcohol	varies widely will exchange with D ₂ O	N/A
о —с–х	carbonyl of ester, amide, or carboxylic acid (X = O, N)	N/A	165 - 185
0 	carbonyl of ketone or aldehyde	N/A	190 - 220

Typical NMR Chemical Shifts

Methyl Acetate

Triphenyl Methanol

Ethyl Acetate

Protons on adjacent carbons also have an effect
Resonances will split into n+1 number of peaks

Spin Spin Splitting

Two hydrogens split neighbors into a triplet

Spin Spin Splitting

Every splitting can be broken down into a series of doublets ¹H NMR Ha H_a H_b (without coupling) C-C-H_b H_b ¹H NMR (with coupling) 2: 1 •

Higher Spin Spin Splitting

H_a will split into 7 peaks

64 different combinations of 6 spins

- Proton resonance split into n+1 number of peaks
- Relative ratio of peaks depends on number of spin states of the neighbors.
- Solution Adjacent protons will couple with the same coupling constant.
- Protons farther away usually do not couple.
- Chemically equivalent protons cannot couple (eg. CICH₂CH₂CI).

Doublet Splitting

Solution Note that the OH (and NH) usually don't couple.

I, I, 2-Trichloroethane

2-Bromopropane

Butanone

17

para-Methoxypropiophenone

© 2004 Thomson/Brooks Cole

Sometimes peaks overlap

© 2004 Thomson/Brooks Cole