NMR Spectroscopy

NMR Phenomenon

Nuclear Magnetic Resonance

- A spinning charged particle generates a magnetic field.
- A nucleus with a spin angular momentum will generate a magnetic moment (μ).

If these tiny magnets are placed in an applied magnetic field (B_0) , they will adopt two different states - one aligned with the field and one aligned against the field. The energy difference between these two states is what we are observing with NMR.

Nuclear Spin States

When EM waves at this energy are directed at the nuclei - it will absorb. Spins will flip from lower energy to higher energy. At that energy, nuclei are "In Resonance".

- Many nuclei are "NMR Active"
 - Spin Quantum Number $I \neq 0$

•
$$|H - | = \frac{1}{2}; |{}^{3}C - | = \frac{1}{2}$$

- ${}^{12}C, {}^{16}O I = 0 Can't be observed$
- Other nuclei that are NMR active
 - ▶ ²H (D), ¹⁴N, ¹⁹F, ³¹P

NMR Instrumentation

Magnetic Resonance Imaging

NMR is the basis for MRI

To summarize

Methyl Acetate - Proton NMR

Methyl Acetate - Carbon NMR

Electronic Shielding - Local Environments

$B_{\text{effective}} = B_0 - B_{\text{local}}$

Actual magnetic field felt by the nucleus

B₀ **B**_{effective}

Methyl Acetate - Proton NMR

Methyl Acetate - Carbon NMR

- The difference in resonance frequency of a nuclei relative to a standard
 - Most Shielded
 - Relatively Inert
 - Volatile

NMR Scale

X-Axis - frequency axis

NMR Spectrum

Low Field Little electron shielding (more electron withdrawing groups)	High Field More electron shielding (less electron withdrawing groups))
awa awa	aks measured as a shift (in Hz) ay from TMS TM	ence IS
10 Hz	0	_

Different Spectrometer Frequencies

Each specific instrument has it's own magnetic field strength - resonace occurs at different frequencies.

$\delta = ppm = Chemical Shift from TMS (Hz)$

Spectrometer Frequency (MHz)

100 MHz NMR

300 MHz NMR

NMR Scale

CI3 NMR

- Difficult Carbon 13 only 1.1% of all carbon.
- Number of different carbons
- Functional Group Regions

CI3 NMR

Symmetry in molecules can make carbons "Chemically Equivalent"

Some molecules have more than one mirror plane

Symmetry

Symmetry

Substitution of Carbon

The intensity of the peaks roughly correlates with the number of hydrogens on the carbon.

^{© 2004} Thomson/Brooks Cole

CI3 NMR Regions

¹³C NMR

р

Bromooctanol

Bromooctanal

Alanine Me-Ester HCl

Alaninol

Alaninol - phthalimide

DEPT-CI3

- A normal CI3
- B CH carbons only
- C Odd # up (CH3 and CH)
 Even # down
 (CH2)

Example from 13.7

A Real Example

The Answer Is ...

- Number of chemically different hydrogens
- Relative Ratios of protons (peak size)
- How many neighboring hydrogens
- Chemical shifts and functional groups

Proton NMR Scale

Range 0-10 ppm

NMR Correlation Chart

	<i>,</i>		
Functional Group	Туре	¹ H Chemical Shift (ppm)	¹³ C Chemical Shift (ppm)
— <mark>С</mark> -Н	Alkane	0.7 -1.8	10 - 60
=C- <mark>C</mark> -H	Allylic or next to carbonyl	1.6 - 2.4	30 - 60
х - <mark>С</mark> -Н	next to halogen or alcohol	2.5 - 4.0	20 - 85
О С-О- <mark>С</mark> -Н	next to oxygen of an ester	4.0 - 5.0	50 - 85
= <mark>с</mark> -н	vinylic	4.5 - 6.5	110 - 150
C-H	aromatic	6.5 - 8.0	110 - 140
О — —С-Н	aldehyde	9.7 - 10.0	190 - 220
O-H	alcohol	varies widely will exchange with D ₂ O	N/A
О С-Х	carbonyl of ester, amide, or carboxylic acid (X = O, N)	N/A	165 - 185
0 C	carbonyl of ketone or aldehyde	N/A	190 - 220

Typical NMR Chemical Shifts

Triphenyl Methanol

Ethyl Acetate

- Protons on adjacent carbons also have an effect
- Resonances will split into n+1 number of peaks

Two hydrogens split neighbors into a triplet

Every splitting can be broken down into a series of doublets
¹H NMR
H_a

Higher Spin Spin Splitting

Pascal's Triangle

singlet 1 doublet 1 1 triplet 1 2 1 quartet 1 3 3 1 quintet 1 4 6 4 1 sextet 1 5 10 10 5 1 septet 1 6 15 20 15 6 1

H_a will split into 7 peaks

64 different combinations of 6 spins

- Proton resonance split into n+1 number of peaks
- Relative ratio of peaks depends on number of spin states of the neighbors.
- Adjacent protons will couple with the same coupling constant.
- Protons farther away usually do not couple.
- Chemically equivalent protons cannot couple (eg. CICH₂CH₂CI).

Doublet Splitting

Note that the OH (and NH) usually don't couple.

I, I, 2-Trichloroethane

2-Bromopropane

Butanone

para-Methoxypropiophenone

Sometimes peaks overlap

Multiple Coupling

Every splitting can be broken down into a series of doublets
¹H NMR
H_a

Coupling with the same J

Coupling with different J values

Cinnamaldehyde

Multiple Coupling

▶ *J* HI-H2 = 6 Hz, H2-H3 = I2 Hz

Cinnemaldehyde

Multiple Coupling - Identical J

Multiple Coupling - Different J

Nitropropane

- Given the Molecular Formula calculate degrees of unsaturation.
- Identify functional groups
- Identify pieces of the structure
- Put the pieces together in a reasonable way
- Double check that your structure matches all the data given.