Chem 342 • Organic Chemistry II

Lecture Summary 03-21 Jan 2009

Chapter 13 - Nuclear Magnetic Resonance Spectroscopy ${ }^{1}$ H NMR Spectroscopy

We can get similar information from proton NMR that we get from carbon NMR, but there is additional information that we can glean.
We can see the number of chemically different hydrogens.
We can get the relative ratio of the protons by integration of the area under the peaks.
We can tell how many hydrogens are neighboring each resonance through spin-spin splitting (coupling)
Chemical shifts tell us about functional groups.
Most proton resonances show up between 0-10 ppm.

Spin-Spin splitting occurs because each proton feels an influence of the neighboring proton spin states. Peaks will be splint into $n+1$ peaks, where n is the number of H 's.

Protons which are coupled to each other will each be split the same distance. This is referred to as the Coupling Constant (J)	1 (without coupling)

An example of splitting with two neighboring H's.

An example of splitting with three neighboring H's.
If there are 3
neighboring H^{2}, there
are four statistical
arrangements of the
spin states. In this
exampe, H_{a} will bet
split into a quartet.

The relative size of the peaks in a split resonance follows Pascal's triangle.

Summary of simple spin-spin splitting

Proton resonances split into $\mathrm{n}+1$ peaks
Relative ratio of peaks depends on the number of spin states of the neighbor - and follows Pascal's Triangle.

Adjacent protons couple with the same coupling constant (J).
Protons farther away than one carbon do not usually couple
Chemically equivalent protons, even on adjacent carbons, cannot couple. (eg. $\mathrm{Cl}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Cl}$)

Daily Quiz

