

The Cook Group **Drug Design - an Iterative Approach** @ NDSU **Structural Analysis of Structural Analysis** Receptor **Drug Lead** of Ligand-Receptor Complex Computational Analysis

Amino Acids

Highly polar zwitterions

Amino Acids

There are 20 common amino acids - 15 Neutral

Amino Acids

Acidic and Basic

Peptides - Proteins

Polymers of Amino Acids

Peptide Bonds

Amide is the main bond - but can have disulfide bonds

Disulfide in Vasopressin

Asp

Glu

Phe

Cys

Vasopressin - antidiuretic hormone from pituitary

Cys

Ту

Peptide - Protein Structure

- Primary Structure amino acid sequence
- Secondary Structure orientation of segments alpha-helix, beta sheets, loops
- Tertiary Structure overall shape of the molecule
- Quaternary Structure overal structure of protein aggregates

Alpha - Helix

A helical secondary structure from keratin

Beta Sheets

Beta sheet secondary structure from Silk fibroin

Hemoglobin

Globular protein with 574 amino acid residues

Types of Proteins

TABLE 26.2 Some Common Fibrous and Globular Proteins Name Occurrence and use

Fibrous proteins (insoluble)

Collagens Elastins Fibrinogen Keratins Myosins

Globular proteins (soluble)

Hemoglobin Immunoglobulins Insulin Ribonuclease Animal hide, tendons, connective tissues Blood vessels, ligaments Necessary for blood clotting Skin, wool, feathers, hooves, silk, fingernails Muscle tissue

Involved in oxygen transport Involved in immune response Hormone for controlling glucose metabolism Enzyme for controlling RNA synthesis

©2004 Thomson - Brooks/Cole

Enzymes

Proteins which act as catalysts for chemical reactions.

Main class	Some subclasses	Type of reaction catalyzed
Hydrolases	Lipases Nucleases Proteases	Hydrolysis of an ester group Hydrolysis of a phosphate group Hydrolysis of an amide group
Isomerases	Epimerases	Isomerization of a chirality center
Ligases	Carboxylases Synthetases	Addition of CO ₂ Formation of new bond
Lyases	Decarboxylases Dehydrases	Loss of CO_2 Loss of H_2O
Oxidoreductases	Dehydrogenases Oxidases Reductases	Introduction of double bond by removal of H ₂ Oxidation Reduction
Transferases	Kinases Transaminases	Transfer of a phosphate group Transfer of an amino group

©2004 Thomson - Brooks/Cole

Citrate Synthase

A dimeric protein that catalyzes an Aldol Reaction Citrate **Synthase** OH ⊖ 0₂C. ⊖ O₂C `S[∕]CoA HS^{COA} Θ ĊO₂ citrate (b) (a)

© 2004 Thomson/Brooks Cole

Citrate Synthase Mechanism

Matrix Metalloproteinases

- Family of Zn-dependent enzymes
 - 26 known MMP's
 - Responsible for maintaining extracellular matrix
- MMP's out of balance in many diseases
 - CANCER, Arthritis, Multiple Sclerosis, Stroke Damage, and many more . . .

Catalytic Site of MMP-1

Catalytic Site of MMP-1 with natural collagen substrate

MMP Structure

hydroxamic acid sar

Hydroxamate Bound to MMP-3

MMP-3 (Stromelysin 1)

Sulfonamide Bound to MMP-3

MMP-3
 (Stromelysin
 1)

2006 Nobel Prize in Chemistry

"for his studies of the molecular basis of eukaryotic transcription"

Prof. Roger Kornberg Dept. of Structural Biology Stanford University School of Medicine

DNA Structure

- 1953 Watson and Crick discovered DNA was made up of two strands running in opposite directions
- The strands are held together by hydrogen bonding from the bases
- Specific bases bind to each other key
- The strands are Complementary

Heterocycles in DNA and RNA

Nucleotides

The DNA/RNA bases are attached to phosphosugars

Nucleic Acid Structure

The nucleotides are connected together by the phosphates on the sugars

DNA Double Helix

- Two grooves are formed
- Sugar phosphate runs along the outside
- The major groove is slightly bigger and deeper than the minor groove

The Genes

DNA is a code for the synthesis of proteins. Every 3 base pair sequence is directly correlated with a specific amino acid.

Transcription

DNA unwinds and codes an RNA strand

RNA Polymerase

Translation

RNA encodes the amino acid sequence for protein synthesis

DNA Wraps Around Histone Proteins

The Cook Group

@ NDSU

Nucleosomes Coil Up

Wrapped Up Tight

Histone Deacetylase

Effectiveness in Clinical Trials

- HDAC Inhibitors show marked effect in the treatment of cutaneous T-cell lymphoma
 - Phase II clinical trials of FK228

HDAC Structure

- HDAC Like Homolog
- 35.2% sequence homology with human HDAC1
- Active site homolog much higher

Finnin, et. al. Nature 1999, 401, 188.

HDAC Inhibitor Design

HDAC Inhibitors

The Cook Group

@ NDSU

TSA and SAHA - Hydroxamic Acids

The Cook Group

@ NDSU

Hydroxamic Acid Binding

SAHA and HDAC Homolog

Conclusions

- Proteins are the stuff of life.
- DNA encodes amino acid sequence of proteins.
- Ezymes are proteins that catalyze chemical reactions.
- Disease can often be targeted by identifying specific enzymes that is important for the disease state.
- Synthetic chemistry can provide solutions for drug development.